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Two sufficient criteria for the convergence of the Rayleigh-Ritz Method (RRM) 
with respect to the eigenvalues ("E-convergence") of non-relativistic electronic 
Hamiltonians of molecules are discussed and compared. Moreover, a necessary and 
sufficient criterion is given. By example (Sect. 9) it is shown that the LZ-completeness 
of the basis is not sufficient to guarantee E-convergence. The convergence of the 
wave functions in different norms ("q~-convergence") is also investigated. In 
particular, sufficient conditions for the one-particle basis functions (orbitals) are 
given, such that a CI calculation in this basis is both E- and g'-convergent. 
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1. Introduction 

The Rayleigh-Ritz Method (RRM) - mainly in the form of CI calculations - is one of 
the standard procedures for approximately solving the Schr6dinger equation. But even 
today, the question of "E-convergence" of the RRM using the conventional basis sets 
of Quantum Chemistry is an open problem, i.e. it is not known for which basis sets 
(qSm)m=l the differences between the Mth order Ritz eigenvalues E! M) and the exact 
eigenvalues E i become arbitrarily small with increasing number M of basis functions 
used in any state, i = 0, 1 , 2 , . . .  

It should be emphasized that only the analytical convergence is investigated. The prob- 
lem of "oscillating" Ritz eigenvalues arising from an "almost linearly dependent" 
basis set I is not the subject of this paper, i.e. numerical stability is always assumed. 

General sufficient criteria of E-convergence have been proved, especially for non- 
relativistic electronic Hamiltonians of molecules by Kato [1 ], for positive definite 
operators by Michlin [2] and, in continuation of Michlin's papers for excited states, 
by Bonitz [3]. 

1 For "almost linear dependence" see Courant and Hilbert [12], p. 63, and Klahn and Bingel [13]. 
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It is the aim of this paper to give a criterion for Hamiltonians analogous to Michlin's 
criterion and to compare it with Kato 's  (cf. Fig. 1). Ultimately we show that  the 
basis {q~m }m =1 must fulfil a stronger condition than the L 2-completeness, namely the 
completeness in the "energy space" H A or even in the space H A ~. 

Moreover, the convergence of the Ritz functions 2 (i.e. "T-convergence")  

M 
M) = ( 1 )  

rn=l  

to the exact wave functions ui in different norms, i.e. the norms of the space L 2 and 
the energy space H A , is investigated (cf. Fig. 3). From this we will obtain a necessary 
and sufficient criterion of  E-convergence. 

We study especially the convergence of CI calculations, i.e. of  an RRM with Slater 
determinants as basis functions (Sect. 8): It is shown that one has to demand the 
H A - or the HA ~ -completeness of  the orbitals from which the Slater determinants are 
constructed. 

In Part II of  this paper [4] we prove the convergence of  CI calculations for special 
orbitals such as Slater and Gauss functions by means of the criteria discussed here. 
The convergence of the RRM for special two-particle functions is also investigated. 

2. Michlin's Criterion of Convergence 

Let all the functions under consideration be defined in the Hilbert space L 2 of the 
quadratically integrabte functions, L 2 having the scalar product (f, g) and the corre- 
sponding norm II fLI = (f, ])1/2. The measure space of L 2 is, unless otherwise stated, 
the 3N-dimensional Euclidian space R 3n, where N denotes the number of  electrons. 

Let B be a positive definite and self-adjoint linear operator with the domain D B C L 2 
dense in L 2 , i.e. there exists a constant t > 0, such that 

(f, B f )  >~ tiff, ]), f @ D B (2) 

holds. Furthermore, let us assume that the lower part of  the spectrum of B consists of  
a finite or infinite number of  isolated eigenvalues. To solve the eigenvalue problem of 
the operator B by means of the RRM it seems reasonable to take a basis set {aPm }~n=l 
which is complete in L 2 . Employing such a basis, each eigenfunction o r B  can be 
approximated in the mean with any desired accuracy. However, the L 2-completeness 
of the basis is not a sufficient criterion of  E-convergence. 

To guarantee the E-convergence, we introduce the "energy space" H B. Let H B be 
that Hilbert space which can be obtained as the closure o l D  B with the B-norm 

IlfllB = (f, Be) 1/2. (3) 

A theorem of Michlin ( [2] ,  p. 79) now says: 

2 All funct ions denoted by u are assumed to be normalized to unity.  
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Theorem l 

Let the basis {~rn}r~=l be complete i n H  B (i.e. relative to the B-norm). Then the RRM 
for the positive definite operatorB converges in this basis to the lowest exact eigen- 
value Eo- 

Bonitz ([3], p. 147) proved the convergence for all excited states i ~< l, on the premises 
of Theorem 1, provided that E l is the first degenerate exact (isolated) eigenvahie. 

The main argument in the proof of Theorem 1 is as follows: I fu  (M) is any variation 
function from the linear space D M spanned by {~m }mM=l, the difference between the 
appropriate expectation value and the exact ith eigenvalue of B is given by [cf. Eq. (19)] 

(u(M), Bu(M)) -- Ei ~ 2Ei~ -1/211 u(M) -- UillB + ]1U (M) -- Ui[] 2. (4) 

This equation holds in particular in the case u (M) = u} M), i.e. if u (M) is the Ritz 
function. The Ritz eigenvalues can be characterized by (cf. Weinstein and Stenger [5], 
p. l l )  

E! M) = min (u (M), Bu(M)), (5a) 
u (M)EDMi 

where 

DMi = {UEDM[ [lull = 1, (u, U}M)) = 0 f o r j < i ) ,  (5b) 

i.e. E~ M) is the minimum of the expectation value orB for u (M) CDM. If the RRM 
does not converge to the ground state, then no sequence u (g) ~ D M  exists, the expecta- 
tion value of which converges to E o. This, however, is a contradiction to the assumed 
HB-completeness of the basis because of Eq. (4). t 

We note that the H B-completeness is not required at all for the proof, but only the 
possibility of approximating the eigenfunction Uo by a basis expansion in the B-norm. 

3. Properties of Hamiltonians 

The non-relativistic electronic molecular Hamiltonian is of the well-known form 

H = T + V, (6) 

where T and V denote the operators of kinetic and potential energy. In position space 
with the one-particle vectors r k = (x k , yk ,  Zk) and the total position vector r = (rl . . . .  rN) 
the operator of kinetic energy for N particles is given by 

+ 3y~ + , (7) T=_�89 
k=l 

and in momentum space with the one-particle and total momentum vectors Pk and p, 
respectively, by 

N 
k. (8) 

k=l 
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Choosing 

DT = {f(r) I (1 +p2)f(p)EL 2 } (9) 

as domain of T, where f(p)  denotes the Fourier transform off(r),  T becomes a self- 

adjoint operator, for it is a maximal multiplication operator (cf. Kato [6], p. 272). 
The operator Vis the well-known Coulomb potential 

N 
1 + ~  1 (10) 

i = 1  ' " 

Here, Z a is the nuclear charge of nucleus a, ria the distance between nucleus a and 
electron i and ri/the interelectronic distance between the electrons i and f. An 
important property of this operator is its T-boundedness, proved by Kato [ 1 ], i.e. 
there exist two positive constants a and b, such that 

[IVfll<<.allfll+bllTftl, f E D  T (11) 

holds, also b can be taken arbitrarily small. Because of this equation, criteria of con- 
vergence independent of V can be proved, and thus, systematic statements about the 
convergence are made possible, valid for all molecules. 

Because of Eq. (11), the Hamiltonian (6) with the domain D T is also a self-adjoint 
operator (cf. Kato [6], p. 287), such that all eigenfunctions of H are elements Of DT. 

As a consequence of Eq. (11), the T-boundedness of V in the quadratic form can be 
proved, i.e. choosing two suitable constants a' and b', where b' may be arbitrarily small, 
the inequality 

l(f, Vf)l <a'llfll 2 + b' II zl/2fll2, f@DT a'2 (12) 

holds (cf. Kato [6], p. 321). Here T 1/2 is the square root (cf. Kato [6], p. 281) of T, 
which in momentum space is defined by 

Ta/2 = 2-x/21p l = 2-1/2 ( k~=lP2k) 1/2 (13) 

having the domain 

DT,,2 = {f(r) [(1 + IP [)]:(P) EL2).  (14) 

Obviously, T 1/2 is a maximal multiplication operator and thus self-adjoint. This is also 
true for the operator (1 + T) 1/2 if its domain iSDT,2. 

It should be noted that Eq. (12) is always a consequence of Eq. (11) even for potentials 
different from (10). But, in general, the opposite is not true, e.g. for the one-dimen- 
sional 8-potential. Thus Eq. (11) is a stronger condition on the potential than Eq. (12). 

Concerning the potential V of Eq. (10), we never make use of its explicit form but only 
of its properties (11) or (12), respectively. Therefore, all the statements of this paper 
hold for any Hamiltonian with a T-bounded potential in the norm [Eq. (11)] or the 
quadratic form [Eq. (12)] according to which of both equations has been used for the 
proof; our statements hold therefore for all "Kato-potentials" (cf. Simon [7], introduc- 
tion and p. 32). 
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4. Michlin's Criterion of Convergence for Hamiltonians 

Hamiltonians of molecules are semi-bounded from below, 1.e. there exists a positive 
constant c such that 

B = e + H ,  D s = D  T (15) 

is a positive definite operator. Choosing a basis set (~m }m =a, which is complete in the 
energy space H B = H e + g ,  the convergence of the RRM for such a Hamiltonian follows 
from Theorem 1. 

In order to eliminate the potential from the condition of convergence, we introduce the 
energy space HA, which is independent  o f  V: Let H A be the closure of the linear space 
D r having the scalar product and norm, respectively 

(f, g)A = (f, Ag )  = (f,  (e + T)g)  (16) 

II fllA = (f, A f )  1/2 = ( f  , (e + T ) f )  1/2 . (17) 

Now, because of the T-boundedness of Vin the quadratic form [Eq. (12)] and the 
positive definiteness ofB [Eq. (2)], the B-norm (3) and the A-norm (17) can be shown 
to be equivalent ,  i.e. there are two positive constants e I and c2, such that 

e a l l f  [tA. <-II fllB ~<r IlfllA, f E D r  (18) 

holds (Proof: Klahn [8], p. 37). Consequently, the energy spaces H A and HB are the 
same (cf. Smirnow [9], p. 297). Thus we have the criterion of convergence for Hamil- 
t onians: 

Theorem 2 ("Michlin's criterion") 

Let the basis (~m}m=l be complete inHA [i.e. relative to the A-norm, Eq. (17)]. 
Moreover, let El be the first exact degenerate eigenvalue of the Hamiltonian H. Then, 
in this basis, the RRM converges to the lowest exact eigenvalues of H for i ~< l. 

A direct proof can be given in complete analogy to the proof of Theorem 1. One has only 
to replace Eq. (4) by the following inequality (Proof: [8], p. 32) 

(u (M), Hu  (M)) - E i ~ 2 I E i l  e -1/2  H u(M) -- UilIA + (2 + 2b' + a'c -1)  It u (M) - ui ]]~ �9 

(19) 

We notice the energy space H A to be independent of the choice of the constant c > 0. 
This is true, because two norms, [I f l lA  (e) and [I f 114 (a), can be shown to be equivalent if 
both e and d are positive constants; the reason being the positiveness of T. Furthermore, 
H A can be obtained either from its definition given above or from the closure o l D  T 
with the A'-norm, which can be introduced in analogy to Eq. (17) 

IIf[[A' = ( f , A ' f )  I/2 = Qe, (e + T1/2)2f)  1/2 (20) 

since the A- and A'-norms are also equivalent (Proof: [8], p. 32). 
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Moreover, the sets DT1,2 and H A can be shown to be the same; also the space HA and 
the Sobolew space  [4/(21) are identical, i.e. the space of all elements f E  L 2 , the general- 
ized first derivatives of which are elements o fL  2 (cf. Smirnow [9], p. 537). Therefore, 
we have the relation between the sets: 

DTI,:  =HA = W( ' ) .  (21) 

We remember that Theorem 2 requires the investigation of completeness in the energy 
space H A . However, one usually studies the question of completeness in the space L 2. 
We therefore formulate a condition of convergence equivalent to that of Theorem 2 
requiring a proof of completeness in L 2 : 

L e m m a  1 

The system {~m)m=l is complete i n H  A if and only if {(c + T)l /20;m}m=l or 
((e + T1/2)q~m}m=l with e > 0 is complete in L 2. �9 

This lemma can be proved by the following (cf. [8], p. 26). 

Lemma  2 

Let L 2 be the Hilbert space of all quadratically integrable functions with the weight 
function p > 0. Then {O m }m=l is complete in L~ if and only if (191/2(!~m }m =1 is 
completein L 2. �9 

Thus, Lemma 1 follows immediately, for HA is a L 2-space in momentum space. To see 
this, one has only to choose 

p = c + �89 (22a) 

or 

/9 = (c  + 2 - 1 / 2 [ p l ) 2  (22b) 

according to the generation of H A by closure with the A- or A'-norm, respectively. 

5. Kato's Criterion of Convergence for Hamiltonians 

Another criterion of convergence was given by Kato [ 1 ]. 

Theorem 3 ("Kato's criterion") 

Let the system ((c + T)qXOm}r~n=a, with c > 0, be complete in L 2 . Then the RRM for the 
Hamiltonian H converges for all states to the exact eigenvalues of H if {qb m }~n=l is chosen 
as a basis set. 

The proof is mainly based on the characterization of the Ritz eigenvalues by Eq. (5) with 
H instead of B and on an inequality analogous to Eqs. (4) and (19), which can be proved 
using the T-boundedness of the potential [Eq. (11); for the proof of Eq. (23) see [8], 
p. 22] : 

(u (M) ,Hu  (M)) -- E i ~ [C-1 (a + let'[) + b + 1] 11 u (M) - uilL4 ~ . (23) 
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The A2-norm, used in Eq. (23), is defined by 

[1 f llA ~ = ( f  , A 2 f )  1/2 = [l(e + T)fH. (24) 

If one introduces the corresponding Hilbert space HA 2, a second condition of convergence, 

equivalent to that of Theorem 3, can be given: Let HAs be the closure of D r  with the 
AZ-norm. We then have the following: 

L e m m a  3 

The system {(c + T)CPm}m=l is complete inL 2 if and only if {~rn}m=l is complete in 
HA2. !~ 

This lemma is a direct consequence of Lemma 2. One has only to realize that HA~ is a 
L~-space in momentum space, where 

p -- ( e  + _�89 . ( 2 s )  

In complete analogy to Eq. (21) we now have the equation 

D T  = HA ~ = WS 2), (26) 

where W (2) denotes the Sobolew space of all elements o fL  2 , the generalized second 
derivatives of which are elements o fL  2 (cf. Smirnow [9], p. 491). 

The different criteria of convergence are summarized in Fig. 1 and the corresponding 
spaces in Fig. 2. 

Kato's condition 

(| is 
HA= -complete 

I 
{(C+ T) ~Pm)m= 1 is 
LZ-complete 

Michlin's condition 

{q~m Jm=l is 
HA-COmplete 

{(c + T?I2 ~.,)m=l is 
L 2- complete 

((c + T1/2)*m)m= 1 is 
L 2-complete 

o o  

{dPm }m= 1 is 
L 2-complete 

Fig. 1. Summary of the relations between the different conditions of convergence 
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HA2 C H A C 

fl II 
D T DT~/2 

It II 

L 2 

Fig. 2. Summary of  the relations between the different spaces and sets used. 
(" II " means equality of  the sets) 

6. Comparison of the Criteria 

Still unanswered is the question: What is the difference between the criteria of  Michlin 
and Kato? We expect Kato's  condition to be the stronger one, because its derivation 
requires the T-boundedness [Eq. (11)],  while the derivation of Michlin's condition 
requires only the T-boundedness in the quadratic form [Eq. (12)],  which itself is a 
consequence of the T-boundedness. Indeed, the following theorem holds: 

Theorem 4 

Let ((I)m)~t~= 1 be complete in HA=. Then {q~m }m=l is complete in HA. 

Before proving this theorem, we state the inclusion 

HAs C H A C L 2, (27) 

which is a consequence of Eqs. (21), (26), (9) and (14). We now have to show that the 
completeness of{( l  + T)l/2q)m}m= 1 in L 2 follows from that of{(1 + T)O~m} m=l in L 2. 
Therefore we choose f E  L z with the property 

( f ,  (1 + T)l/2~m) = 0,  m = 1,2,  3 . . . .  (28) 

and show f to be the zero element 3 of L 2 : To f there exists a function g E H A with 
the property 4 

f =  (1 + T)l/2g. (29) 

Using the self-adjointedness of (1 + T) 1/z , from (28) and (29) we obtain 

(g, (1 + T)cbm) = 0, m = 1,2,  3 , . . .  (30) 

Because of the assumed completeness of  {(1 + T)~  m )~n=l and the fact that g E HA C 
L 2 , it follows that g = 13 and thus f = 13 by Eq. (29). I~ 

Analogously one can prove: 

Theorem 5 

Let {qbm}~n= 1 be complete in HA. Then {dbm}~n=a is complete in L 2 . 
We emphasize that the inverse of  Theorems 4 and 5 is not true, i.e. there exist basis sets 

3 The zero element of  L 2 and HA, respectively, is denoted by | 

4 This function is determined by its Fourier transform g~ =f/(1 + p2/2)1/2. 
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which are complete in L 2 but incomplete in H A or which are complete in HA but incom- 
plete in HA2 (cf. Sect. 9, Table 1). 

Therefore the HA s -completeness is a sufficient but not a necessary condition of E-con- 
vergence. The weaker condition of H A -completeness is also only sufficient, since it can 
be sharpened to a necessary and sufficient condition (cf. Theorem 6, Sect. 7). Such a 
sharpening is possible because the H A -completeness of  the basis has not been fully used 
for the proof  of  Michlin's criterion, but only the possibility of  approximating all the 
eigenfunctions of  H in the A-norm. 

A consequence of Theorems 4 and 5 is that both Kato's  and Michlin's criterion require 
the L 2-completeness of  the basis. But it can be shown that the L a-completeness is not a 
necessary criterion because of  the incompleteness of  the set {ui}~= o in L 2 , since the 
molecular Hamiltonian always contains a continuous spectrum. 

With restriction to non-degenerate exact eigenvalues, Michlin's criterion seems to be 
completely sufficient for investigating the question of E-convergence. But Kato's  criterion 
is much more easy to handle than Michlin's in such cases, where only a proof  of com- 
pleteness in position space is feasible. The reason is that the operator T in  position space 
is the well-known differential operator defined by Eq. (7), whereas T 1/2 is a rather 
inconvenient integral operator. 

It should be emphasized that the criteria discussed in this paper do not refer to the speed 
of the convergence. For this property depends decisively on the special molecule under 
consideration, i.e. on its potential. 

7. The Convergence of the Wave Function 

If  the Ritz eigenvahies converge to the exact eigenvahies with M ~ 0% the convergence 
of the Ritz functions in the mean follows - non-degenerate exact eigenvalues assumed- 
for the ground state from Eckart 's inequality (Eckart [10] )s 

E(o M) _ E o 
{I u (M) - uol[ 2 ~<2 (31) 

El -Eo 

and for excited states from its generalization given by L6wdin [11] 

Ilu(~M)- uiI[2 <x2 ~i+q T~ii  l + G 2  2 (s -E] )  , G i :  E ( e i - e ( M ) )  -1/2, 
/=o j=o (32) 

Furthermore, the ~-convergence in the A-norm follows from the inequality 6 

JI . }M)_  ~. ll~ ~< (~}~) - Ei) ~(1 - b') -~ + 2(E~+~ - E~)-'B,~ 
[ i - ,  ] (33) 

Hi= [c+(a'+lE~l)(1 - b ' )  - t ]  1 +G~ ~ (E,-+~ - E j )  , 
j=O 

s Eqs. (31), (32) and (33) are meaningful only if u(t M) has been multiplied by a complex phase 
factor of absolute value 1, such that the overlap integral (ui(M) , ui) becomes real and positive. 
6 In Eq. (33), b r < 1 is assumed. 
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which can be proved as follows: With the relation A = e + T = c + H -  V [cf. Eq. (17)] 
and Eq. (12) one obtains for any f E  HA 

l[ f ll~4 <- (c + a' - b'c) II fll z + b' I[fll~ + I(f, g f )  l. (34) 

Choosing especially f = u} M) - ui, one easily obtains 

(f, H f )  : E} M~ - Ei + EiII f tl 2. (35) 

Putting (35) into (34) and solving (34) for [1 f l l ~ ,  one gets 

II f l l~  ~< (E} M) - gi)(1 - b ')  -1 + [c + (a' + IE/[)(1 - # ) - 1 ]  II f l l  2. (36) 

With (32), Eq. (33) follows at once. l~ 

From Eq. (33) we see that the ~-convergence in the A-norm is a necessary condition 
of E-convergence. Thus, combining the inequalities (33) and (19) and employing Eq. 
(5), we obtain a necessary and sufficient criterion for E-convergence: 

Theorem 6 

The RRM converges to the lowest 1 (non-degenerate) exact eigenvalues if and only if 
the basis {d~rn}~n= 1 is chosen such that the lowest l exact wave functions of  the 
Hamiltonian can be approximated in the A-norm with any desired accuracy. * 

It should be noted that this condition of convergence is a weaker one than the 
H A-completeness of Michlin's criterion; for if a basis is complete in HA, surely all 
the exact wave functions can be approximated by a basis expansion in the A-norm 
with arbitrary accuracy, whereas the reversal is not generally true. But since the 
HA-completeness of  a basis set is much more easy to prove than the possibility of  
approximating explicitly unknown wave functions, theorem 6 is rather useless for 
practical purposes. 

No definite statements can be made about the ~-convergence in the A 2 -norm, however. 
If the basis is H A -complete but HA~ -incomplete, then 

Ilu} M ) -  uillA2 -+0 ( M - ~ o ) ,  (37) 

in general, does not hold even though the RRM is E-convergent. Moreover, it is not 
clear whether the HA~ -completeness is a sufficient criterion for the validity of  Eq. (37). 
Possibly, this is not the case. 

We now ask whether the Schr6dinger equation is fulfilled in the limit M-+ 0% 
i.e. whether 

II (H - E(M)~, (M) -~ ,~oi IL --' 0 (M-+ ~) (3s )  

is valid for any E-convergent RRM. The answer is no, since, in general, Eq. (37) does 
not hold and because of 

Lemma 4 (cf. [8],  p. 46) 

Let the RRM be E-convergent for the ith s t a t e ]  Then Eq. (37) holds if and only if Eq. 
(38) holas. * 

7 This assumption can be shown to be dispensable. 
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Relations between the statements about the ~I'-convergence relative to different norms 

can be obtained from the inequality (39), which is a consequence of the positiveness 
of T 8 

{IfllA = ~>c l l f I l~  >~c2{[fl[, f ~ g A = .  (39) 

From this, the q~-convergence in the A2-norm causes that in the A-norm and the latter 

that in the mean square: 

{{u(iM)--UiIIA ~ -+O#'~{{u}M)--Ui[[A -->Of'~[lu(M)--uil{-->O (M-+oo). (40) 

All the statements made in this section about convergence are summarized in Fig. 3. 

H (11 - e!M)>} M) ,, ~ o 

E}M) _ Ei--* 0 < 

> 1t u! M) - ui {IA 2 ~ 0 

1 
> Ilu(iM)-uil iA~O 

l 
II u(i M) - uil{ ~ 0 

Fig. 3. Convergence scheme for the 
wave functions. The scheme holds 
for the lowest l states (i = 0, ..., l - i), 
if E l is the first degenerate eigenvalue 

8. The Convergence of CI-Calculations 

In Quantum Chemistry, the RRM is often carried out in the form of a CI-calculation, 

i.e. the N-electron basis functions 9 q5 m are chosen to be N-dimensional Slater determinants 

generated from a given set of one-particle functions or orbitals r (rx). It is therefore 

desirable to find conditions for  the orbitals, such that the CI calculation converges. 

It is reasonable that the HA- or HAs- completeness of the orbital basis is a sufficient 

condition of convergence. We will now show this to be the case. 

Since Slater determinants are - apart from the spin functions - linear combinations of 

N-fold products of the orbitals, we first of all study the completeness properties of 
such product functions. 

As is well known, the following lemma is valid (cf., e.g., Courant and Hilbert [12], 
p. 56, or Kato [6], p. 255, in a somewhat different formulation): 

L e m m a  5 

Let the orbital basis {~m (rl)}m =t be complete in L 2 (N3). Then the set of all N-fold 

8 More precisely, the second part of Eq. (39) even holds for any f ~  H A . 
9 Different from the previous notation, q~m now denotes a function incIuding spatial-and spin- 
coordinates. 
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product functions 

rn(k rk 
= m(k)=a 

is complete in L2(R3N). 

From this we get another lemma, which is the most important step in proving the 
convergence of CI calculations: 

Lemma 6 

Let the orbital basis (~0 m (u be complete in HA (N3). Then the set of all N-fold 
product functions 

= I m(k )=l  

generated from this is complete in H A (N3N). 

Proof(carried out in momentum space) 
Beca~:se of the assumption and Lemma 1 the system 

{(I + {Pl [)~m(Pl))~n=l (41) 

is complete in L2(N3). Therefore, with Lemma 5, the completeness of 

1 + IPk [)~m(k)(Pk (42) 
m(k)= l  

in L2(• 3N) follows. Because of Lemma 1 we have to prove the completeness of 

1 + lp  k I~l ~Pm(k)(,Pk) (43) 
k=l m(~)=l 

in L 2 (N3N). Thus we choose an element t ip)  ~ L 2 (•3N), such that f i s  orthogonal to 
the set (43), and show that f =  | From the orthogonality of f to the set (43) and with 

1 + p]: 

g(P)= N k=l f (p)~LZ(N3N) (44) 

1~ (1 + IPkl) 
k=l 

it follows that 

, 17I(1 * IPki)@n(k)(Pk) =0; re(k)= 1 ,2 ,3  . . . .  (45) 
k=l 

As the set (42) is complete in L 2 ([R3N), we conclude that ~ = | and, because of (44), 
finally t ha t f  = | * 
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A corresponding lemma relative to the space HA 2 can be proved in a completely 
analogous way. 

Hence, the convergence of  the RRM for arbitrary molecules follows on account of  
Michlin's or Kato's  criterion, respectively, if the pertaining basis consists of  all possible 
N-fold product functions that can be constructed from an orbital basis complete in 
HA orHA~. 

Taking spin into account, the criteria of  convergence have to be modified. Instead of  
requiring the completeness of  the pure spatial basis in H A or HA ~, one now has to investi- 
gate the completeness of  a basis set including spin functions in the spaces/tA(N) or / tA ~ (N), 
respectively. These spaces are defined as the direct product of  the spaces HA(R 3N) and 
H A ~ (N 3N) with the N-particle spin space S N of dimension 2at: 

HA(N) = HA(~ 3N) | (46) 

ff  A~(N) = HA2(R 3N) (~ aN. (47) 

As exact wave functions are antisymmetric, it is sufficient for the convergence to take 
basis sets, which are complete in the sub@ace of  all antisymmetric functions from HA(N) 
or/ tA ~ (N). 

Now, let a(s) and fi(s) be the well-known one-particle spin functions spanning S t . Then 
the finite set of  all possible N-fold product functions of  {a,/3} forms a complete set in 
SN. I f  we multiply each of these functions with each one of  an N-fold product set 
generated from an orbital basis (Pro }m =1, we have constructed all possible N-fold 
product functions including spin from {Pro }m =1 ; this set is called lo {~(N)). Moreover, 
if the orbital basis is complete in HA(R 3) or HA~ (R3), the set {~(N)} is complete in 
HA(N) or HA~(N)because of Lemma 6. 

Furthermore, if J is the antisymmetrizer,  {qSrn = ,;r is the set of  all Slater 
determinants that can be obtained from {Pro }Tn =1. Finally we get 

Lemrna 7 

If  the orbital basis {Pro }m =t is complete in HA(R3), the set of  all possible Slater 
determinants that can be constructed from this basis is complete in the subspace of  all 
antisymmetric functions of/ tA(N)- 

proof 

Let f E  HA(N) be antisymmetric and orthogonal to all the Slater determinants {q~rn )m =1 
relative to the A-norm, Eq. (16). As d is a projector - provided it is suitably normalized - 
it follows that al 

(f, %N))A = ( ~ f ,  %N))A = el, d % N ) ) A  = 0 ~, ~ ) A  = 0. (48) 

lo K denotes a super-index characterizing all the spin-orbital indices of q~V ). 
11 The integration of the scalar products has to be carried out over spatial and spin variables. 



22 B. Klahn and W. A. Bingel 

Because (q~N)} has been shown to be a complete set in/qA (N), from (48) we conclude that 

f = O .  �9 

A quite analogous lemma can be proved for the space HA=. 

Finally, we summarize the two criteria of convergence for CI calculations, where [.denotes 
the one-particle operator of kinetic energy. 

Theorem 7 ("Michlin's Criterion") 

�9 " r o a  Let the orbital basis (~0m( 1)}m=t be complete in HA(•3), which is the case if and only 
if {(c + D 1/2~0m }m =I or {(c + ? l / : ~ m  }m =1, respectively, with c > 0, are complete in 
L2(Na). Let E~ be the first degenerate exact eigenvalue of the Hamiltonian (within 
the quadratic form T-bounded potential). Then the CI calculation converges for the 
states i = 0, l, 2 . . . .  , l to the exact eigenvalues if the set of all Slater determinants that 
can be constructed from (~0rn }m =l is taken as a basis. Moreover, the Ritz functions of  
the 1 lowest states converge to the exact wave functions both in the mean square and 
in the A-norm. �9 

Theorem 8 ("Kato's Criterion") 

Let the orbital basis {~0m(rl) }~n=l be complete in HA=(R3), which is the case if and 
only if {(c + ?)~0m }~ =1, with c > 0, is complete in L 2 (ff~ a). Then the CI calculation 
converges for all states of the Hamiltonian (with T-bounded potential) to its exact 
eigenvalues if the set of  all Slater determinants that can be constructed from {~rn }m =~ 
is taken as a basis. Moreover, if the lowest l exact eigenvalues are non-degenerate, the 
Ritz functions of these states converge to the exact wave functions both in the mean 
square and in the A-norm. �9 

It should be emphasized that because of Theorem 7 the question of E-convergence 
for arbitrary molecules up to the first degenerate exact eigenvalue can be decided by 
a single proof of completeness; using Theorem 8 this is possible even for degenerate 
states. 

9. Example of a Basis Complete in L ~ which Leads to a Non-Convergent RRM 

That the L ~-completeness of a basis is not a sufficient criterion for E-convergence will 
now be shown by an example. We give a basis complete in L 2, such that the RRM for 
the 1 s-state of the hydrogen atom converges to a wrong value. 

A basis set of this kind is 

(~rn = (1 + T)l/2rrne-r)m=l" (49) 
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To show its properties in detail we first consider the completeness properties of the 
functions 

fm (r) = r m exp ( -  ~r), ~ > O. 

For these, the following statements are valid 12 : 

a) {fm}m=rn' with m ' />0  is complete in s-L 2, 

b) {fm)m=o is complete in s-H A and S-HA=, 

c) {frn)m=l is incomplete in S-HA= , 

d) (fm}m=l is complete in s-H A . 
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(50) 

Proof: 

a) The proof can be seen from the second part, [4], Eq. (26). 

b) See [4], Theorem 3. 

c) As can be checked easily, for the s-L 2 function 

g(r) = (�89 + T) exp(-~r)  = ~r -1 exp( -  ~r) (51) 

the following orthogonality relations are valid: 

(g, (1~2 + T)fm ) = 0 for m/> 1 (52) 

Thus, the assertion follows from Lemma 3. 

d) Let f b e  an element o f s -H  A with 

(f ,  fm)A = (f, (~2  + T ) f m ) = O  form/> 1. (53) 

We have to show that 3 f =  | Since the system 

(�89 + T)fo =g and {(�89 + T) fm)m =1 (54) 

is complete in s-L 2 by property b) and I_emma 3, the system ((1~2 + T) fm}m = a is 
complete in s-L 2 @{g} by Eq. (52), i.e. the orthogonal complement ofs-L 2 relative to 
the function g. Because of Eq. (53) f i s  orthogonal to s-L 2 O {g), i.e. f i s  equal to g 
apart from a complex number. However, g is not an element of the space s - H  A , as can 
be checked most easily in momentum space. Thus, we have f =  | since f ~  s-H A by 
assumption. # 

We summarize the properties of the fm in Table 1 : The first two lines correspond to 
a)-d), the last two lines can be obtained from the first ones applying Lemmas 1 and 3 
and Theorems 4 and 5. 

From Table 1 we see that the basis (49) is complete in s-L 2 but incomplete in s-H A . 
Therefore, we expect the RRM in the basis (49), e.g. for the ground state of the hydro- 

12 s.L 2, S.HA and s-HA2 denote the subspaces of all s-functions of L2( ~3),HA (~ 3) and HA2(N3). 
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Basis s-L 2 s-HA s-HA2 

~ o  

{ fro}m=0 + + + 

rim}m=, + + - 

((1~2 + T ) l / 2 f m } ~ n =  1 + _ _ 
cx~ 

.[(1~2 + T ) f m ) m = l  _ _ _ 

Table 1. Completeness properties of the 
functions fm= rm exp ( -  fr) in the spaces 
&L 2 , s-H A and s.HA2. "+" means complete- 
ness and " - "  incompleteness of the set in 
question 

gen atom, to converge to a wrong value. To prove this, from Eq. (33) the existence of a 
positive constant K has to be shown, such that 

II u U  ) - Uo II ~ / >  K,  (55)  

i.e. because of Uo = 9 -1/2 exp ( - r )  and Eq. (1) 

I El' + T) l /2~m _ (1 + T)1/277-1/2 exp ( - r )  ~>K. 
m ~ 

(56) 

For this purpose, we make an orthogonal decomposition of the function (�89 + T)a/2Uo 
into 

4 (2)1/2 e x p ( - r )  
hi  = ~ 7" (57a) 

and 

h 2 = ( � 8 9  7I "1 /2  3-74(2) 1/2 exp ( - r )  r (57b) 

which has been chosen, such that hi  is orthogonal to the set {(�89 + T)l/20~rn }m=l [cf. 
Eq. (52)].  Thus we get 

~ ( M ,  i l  112 I1, ( M ) - , O [ [  2 =][2lCOrn~ '  + T ) l / 2 6 p m - h  1 - h  2 

= m ~ = l l . o m k 2 + T ) l / 2 ~ m - h 2  + [Ihl [12 

64 
> 11 ha 1]2 = ~ 2  = K ,  (58) 

which proves Eq. (55) and consequently the convergence of the RRM for the ground 
state of  the hydrogen atom in the complete basis (49) to a value E(0 ~~ > - �89 i.e. higher 
than the exact value. 

Moreover, from Eq. (33) the minimal defect for such a calculation can be determined. 
It turns out that (cf. [8], p. 143) 

E (M) - E  o > 10 -3 . (59) 
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The example discussed here may appear to be somewhat artificial. As will be seen in 

the second part of this paper, the conventional basis sets - apart from some restrictions - 

are indeed complete in H A or HA 2 , if they are complete in L 2 . 

For one-dimensional spaces simpler systems than (49) can be found : For example, the 

set 

{x rn exp (-�89 (60) 

is complete in L2(R) but incomplete in HA (R) (cf. [8], p. 136). Moreover, all the 
functions of this set are elements of DT. Thus, a theorem of Luchka [14] is disproved, 
asserting that a basis set complete in L 2 is also complete in H A if all functions are 

elements of the domain of A, i.e. in our case of D r .  

Finally we give an example for the curious case that the Schr6dinger equation for an 

indefinitely increasing number  of basis functions is not fulfilled in the sense of Eq. 

(38), even if the RRM is convergent. We consider the set {fro }m =1 of Eq. (50) with 

= 1 as a basis, which is complete in s-H A but incomplete in s-HA2 (cf. Table 1), such 
that the RRM for the ground state of the hydrogen atom is certainly E-convergent. 

However, by Eq. (52) we get 

[I - . o  It - -  14 + r ) ( . ( o  - " o ) I I  

= II (21 + T)U(o M) II ; + II (�89 + T)Uo II : 

~> II (�89 + Z)uo II 2 __ 2, (61) 

i.e. the Ritz functions U(o M) do not converge to u o in the A2-norm. Consequently the 

Schr6dinger equation is not fulfilled with M-+ ~ by Lemma 4 in spite of the 

E-convergence. 

Note added in proof (for part I of the papers) 
After submitting the manuscript for publication a theorem of A. Bongers (private communication) 
came to our knowledge, which proves the convergence of the RRM on the premises of Michlin's 
criterion, i.e. H A-completeness of the basis, even in the case of degenerate exact eigenvalues. 
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